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Abstract

Comparison of demo-genetic models using Approximate Bayesian Computation (ABC) is an active research field. Although

large numbers of populations and models (i.e. scenarios) can be analysed with ABC using molecular data obtained from

various marker types, methodological and computational issues arise when these numbers become too large. Moreover,

Robert et al. (Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15112) have shown

that the conclusions drawn on ABC model comparison cannot be trusted per se and required additional simulation analy-

ses. Monte Carlo inferential techniques to empirically evaluate confidence in scenario choice are very time-consuming,

however, when the numbers of summary statistics (Ss) and scenarios are large. We here describe a methodological innova-

tion to process efficient ABC scenario probability computation using linear discriminant analysis (LDA) on Ss before com-

puting logistic regression. We used simulated pseudo-observed data sets (pods) to assess the main features of the method

(precision and computation time) in comparison with traditional probability estimation using raw (i.e. not LDA trans-

formed) Ss. We also illustrate the method on real microsatellite data sets produced to make inferences about the invasion

routes of the coccinelid Harmonia axyridis. We found that scenario probabilities computed from LDA-transformed and

raw Ss were strongly correlated. Type I and II errors were similar for both methods. The faster probability computation that

we observed (speed gain around a factor of 100 for LDA-transformed Ss) substantially increases the ability of ABC practi-

tioners to analyse large numbers of pods and hence provides a manageable way to empirically evaluate the power available

to discriminate among a large set of complex scenarios.
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Introduction

One prospect of current biology is that molecular data

will help us to reveal the complex demographic pro-

cesses that have acted on natural populations. The exten-

sive availability of various molecular markers and

increased computer power have promoted the develop-

ment of inferential methods and associated softwares

(e.g. Beaumont & Rannala 2004; Excoffier & Heckel 2006).

Among these novel methods, Approximate Bayesian

Computation method (ABC; Beaumont et al. 2002) is

increasingly used to make inferences from large data sets

for complex models in population and evolutionary

biology (e.g. Estoup et al. 2004; Jakobsson et al. 2006;

Fagundes et al. 2007; Rosenblum et al. 2007; Neuensch-

wander et al. 2008; Toni et al. 2009; Verdu et al. 2009;

Bazin et al. 2010; Estoup & Guillemaud 2010; Ascunce

et al. 2011). The use of ABC techniques has also been

envisaged and successfully processed in other research

fields, such as infectious disease epidemiology (e.g.

Luciania et al. 2009) and systems biology (e.g. Ratmann

et al. 2009).

General statistical features, practical aspects, and

applications of ABC in evolutionary biology have been

reviewed in at least three recent papers (Beaumont 2010;

Bertorelle et al. 2010; Csilléry et al. 2010). Briefly, ABC

constitutes a recent approach to carrying out model-

based inference in a Bayesian setting in which model
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likelihoods are difficult to calculate (owing to the

complexity of the models considered) and must be esti-

mated by massive simulations. In ABC, the posterior

probabilities of different models and ⁄ or the posterior dis-

tributions of the demographic parameters under a given

model are determined by measuring the similarity

between the observed data set (i.e. the target) and a large

number of simulated data sets; all raw data sets (i.e. mul-

tilocus genotypes or individual sequences) are summa-

rized by so called summary statistics (Ss). Examples of

such Ss in population genetics are the mean number

of alleles or heterozygosity per population and FST or

genetic distances between pairs of populations. In

practice, ABC users can base their analysis on simulation

programs and then use statistical software to postprocess

their simulation outputs. Several ABC programs have

recently been developed to provide nonspecialist users

with integrated solutions. They vary in the extent to

which they are user friendly and they can be used for

both data simulation and some postprocessing steps (see

Table 1 in Bertorelle et al. 2010).

Although the methodology presented here is of more

general interest, the present work focuses on population

genetics applications and applies to the model choice

question. In this context, models are evolutionary scenar-

ios for which relative supports are compared through

their posterior probabilities. Choosing among a finite set

of scenarios is crucial when doing inferences about evo-

lutionary history and processes for at least two reasons:

(i) it allows making general conclusions about major evo-

lutionary events (e.g. admixture between populations,

occurrence of bottleneck events or identification of source

populations) and (ii) it makes it possible to estimate

posterior probabilities of parameters assuming a single

scenario if the later is strongly supported (see the reviews

of Bertorelle et al. 2010; Csilléry et al. 2010; Estoup &

Guillemaud 2010 for various illustrations regarding model

choice). When processing ABC analyses, all the models

are generally simulated the same number of times. This

is equivalent to giving the same prior probability to each

model under comparison and zero probability to any

other model. In the final set of retained simulations (those

that have Ss close to the target’s), the data sets produced

by the more supported models will be overrepresented,

and the data sets produced by other models will be

under-represented or even absent. Intuitively, the proba-

bility of a model is related to the relative frequency of the

data sets it produces, which are among the retained sim-

ulations (Weiss & von Haeseler 1998; Pritchard et al.

1999). This frequency may be taken as an estimate of the

posterior probability of a model, but this estimate is

rarely accurate in complex models when, inevitably, they

are too few retained simulations or they also contain

data sets not closely matching the observed data

(e.g. Guillemaud et al. 2010). Recently, Leuenberger &

Wegmann (2010) proposed the use of a parametric gen-

eral linear model to adjust the model frequencies in the

retained simulations. However, the most used and tested

method, also available in integrated ABC packages such

as DIYABC (Cornuet et al. 2008, 2010), is the adjustment

based on the polychotomous logistic regression intro-

duced by Beaumont (2008) (see also Fagundes et al. 2007;

Cornuet et al. 2008). The coefficients for the regression

between a model indicator (response) variable and the

simulated Ss (the explanatory variables) can be esti-

mated, allowing the estimation of the posterior probabil-

ity for each model at the intercept condition where

observed and simulated Ss coincide. Confidence intervals

(i.e. 95% CI) of the probabilities can be computed as sug-

gested by Cornuet et al. (2008).

Large numbers of populations and loci can be analy-

sed with ABC, and there is no limit to the number and

complexity of the models (hereafter named scenarios)

considered. However, several issues arise when the num-

ber of populations becomes too large. The number of Ss

to be manipulated increases considerably with the num-

ber of populations. This is especially true when different

types of markers requiring different types of Ss are con-

sidered in the same analysis. A too large number of Ss

may be of concern because ABC algorithms attempt to

sample from a small multidimensional sphere around

the observed statistics. The more Ss, the more difficult it

becomes to match the observations closely and increasing

the number of simulations may not be sufficient to deal

with this issue (Beaumont et al. 2002). This phenomenon,

which may potentially degrade the estimations of poster-

ior distributions of demo-genetic parameter as well as

those of model posterior probabilities, is often referred to

as the ‘curse of dimensionality’ (e.g. Beaumont et al. 2002;

Blum & François 2009). There may be also a problem of

colinearity among explanatory variables (Ss) resulting in

instability of the regression when (too) many Ss are intro-

duced (Besley et al. 2004; Bazin et al. 2010). Recent

improvements of ABC get round these problems using

dimension reduction techniques, including a nonlinear

feed-forward neural network (Blum & François 2009) and

partial least squares (PLS) regression (Wegmann et al.

2009; see also Bazin et al. 2010). At least some algorithms

of this type have been implemented in the package ABC-

toolbox (Wegmann et al. 2010). The added value of such

algorithms in the context of complex models and large

data sets remains, however, to be thoroughly tested (Ber-

torelle et al. 2010). Most importantly, although the model

itself can be considered as an additional parameter to

infer, the PLS dimension reduction technique applies to a

continuous response variable. Therefore, this technique

can be applied to the estimation of posterior distributions

of demographic and genetic parameters under a given
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model and not to the computation of posterior probabili-

ties of models, the latter corresponding to a discrete

response variable. Initially developed for the estimation

of posterior distributions of demographic and genetic

parameters, neural networks might theoretically be

applied to model choice (Ripley 1996), but, to our

knowledge, this has not been tested and achieved in

practice, at least in the context of complex models and

large data sets.

Robert et al. (2011) have shown that, because ABC

algorithms involve an unknown loss of information

induced by the use of insufficient summary statistics, the

conclusions drawn on model comparison cannot be

trusted per se and required further simulation analyses.

As pointed by Bertorelle et al. (2010) and Robert et al.

(2011) among others, confidence in model choice may be

nevertheless empirically evaluated by processing Monte

Carlo evaluation of false allocation rates (type I and II

errors) based on ABC posterior probabilities computed

from simulated pseudo-observed data sets. A version of

this exploratory analysis is already provided in the

DIYABC software (Cornuet et al. 2008, 2010). This evalua-

tion, based on the simulation and analysis of pseudo-

observed data sets (hereafter named pods), represents a

useful and manageable quality assessment for practitio-

ners but is very time-consuming. The polychotomous

logistic regression used to estimate scenario probabilities

requires the computation of a matrix involving a very

large number of loops [i.e. (number of compared scenar-

ios)2 · (number of Ss)2 · (number of selected simulated

data sets close to the target data set)] at each iteration of

the Newton–Raphson method (Cornuet et al. 2008). This

makes computation particularly time-consuming when

the number of scenarios and Ss become large. Moreover,

computations involve several large matrices and proba-

bilities that are sometimes simply not computable when

the computer memory space is not large enough. This is

of particular concern when type I and type II errors have

to be computed from a large number of pods. As previ-

ously stressed, such computations are nevertheless more

and more requested by ABC experts for assessing the

power to discriminate among scenarios (e.g. Fagundes

et al. 2007; Verdu et al. 2009; Bertorelle et al. 2010; Lomba-

ert et al. 2010; Robert et al. 2011).

In this paper, we describe a methodological innova-

tion to more efficiently process ABC scenario probability

estimation using linear discriminant analysis (LDA)

transformations on Ss before computing the logistic

regression. We first describe the principle and goals of

the method. We then use simulated pods to assess its

main features (precision and computation time) in com-

parison with probability estimation using logistic regres-

sion on raw (i.e. not LDA transformed) Ss. Finally, we

illustrate the method on real microsatellite data sets

produced by Lombaert et al. (2011) to make inferences

about the worldwide routes of invasion of the coccinelid

Harmonia axyridis.

Materials and methods

Linear discriminant analysis

The LDA is a standard technique for supervised classifi-

cation. For a modern and comprehensive presentation of

LDA, we invite readers to refer to classical textbooks such

as Ripley (1996), McLachlan (2004) or Hastie et al. (2009).

The LDA dates back to Fisher (1936) who proposed the

dimension reduction technique that contributed to the

popularity of LDA. Actually, the classifier estimated with

the LDA depends only on some linear projection of the

data set onto a linear subspace whose dimension is smal-

ler than the number of groups, denoted by K. It is not our

purpose here to explain how this low-dimensional pro-

jection of the data can further lead to a LDA classifier that

provides automatic rules to classify a new data point to

the class with the largest posterior probability. As a mat-

ter of fact, we are here only interested in the dimension

reduction part of LDA and hence in the construction of

the (K ) 1) discriminant variables. Those discriminant

variables are noncorrelated, linear combinations of the

original variables that maximize the between-class vari-

ance relative to the within-class variance, which is

assumed identical among the different classes. This mini-

mizes the overlap between the classes when projected on

the discriminant subspace if the within-class distribution

were Gaussian. Note that the discriminant variables are

ordered with respect to their ability to move the classes

further apart.

In the methodological framework considered here (i.e.

that of computing posterior probabilities of scenarios

using ABC), we used LDA to transform the set of usually

large number J of summary statistics (Ss) into (K ) 1)

independent variables maximizing the differences

among the K compared scenarios (assuming K < J). The

goal was to reduce the dimension of the set of explana-

tory variables from J nonindependent to (K ) 1) indepen-

dent variables, whatever the value of J. Certainly,

variance of the Ss varies among the different scenarios.

Even in that case, however, the projection onto the discri-

minant subspace was proved relevant as a dimension

reduction technique; see the classical textbooks cited pre-

viously. It is worth noting that we also weighted the sim-

ulated data sets to give more importance to the ones that

are closer to the observed data set. The LDA functions

were used to transform both the (raw) simulated and

observed Ss. Details on LDA computations and transfor-

mation of Ss are given in the Appendix S1 (Supporting

information).
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We first recapitulate how computation of the discrimi-

nant variables was included in practice as a single addi-

tional step of the ABC process to allow the computation

of the posterior probabilities of scenarios.

Step 1: We selected a subset of x% (typically 1%) best

simulations in a standard ABC reference table (i.e. the

table where parameter values drawn from priors and cor-

responding simulated Ss have been recorded) usually

including 106 simulations for each of the K compared sce-

narios. This selection was based on the standard normal-

ized Euclidian distance computed between the observed

and simulated ‘raw’ (i.e. not transformed) Ss (e.g. Beau-

mont et al. 2002) and hence corresponded to the x% simu-

lations with the smallest Euclidian distances.

Step 2 (LDA step; see Appendix S1, Supporting infor-

mation for details): we used LDA to transform the raw Ss

of this subset of x% best simulations into (K ) 1) discri-

minant variables maximizing the differences among the

K compared scenarios. When computing LDA functions,

we weighted the simulated data sets with the Epanechni-

kov kernel commonly used in the local regression (equa-

tion 5 in Beaumont et al. 2002).

Step 3: We estimated the posterior probabilities of

each competing scenario by polychotomous logistic

regression (Cornuet et al. 2008) on the x% best simulated

data sets now summarized by (K ) 1) discriminant vari-

ables instead of J nonindependent variables (i.e. raw Ss

statistics). Confidence intervals (i.e. 95% CI) were com-

puted for each posterior probability using the (K ) 1)

independent variables following Cornuet et al. (2008).

Hence, our proposal included only a single additional

step (i.e. Step 2) when compared to the computation tra-

ditionally proposed by different authors (e.g. Fagundes

et al. 2007; Beaumont 2008; Cornuet et al. 2008, 2010).

Processing Step 2 substantially decreases the number of

explanatory variables through the production of LDA

variables maximizing the differences among the com-

pared scenarios. This provides three main advantages.

First, computation of scenario probabilities using the

polychotomous regression of Step 3 becomes (much) fas-

ter and sometimes simply feasible. Second, a lower num-

ber of explanatory variables may also improve the

accuracy of the ABC approximation, particularly when

the number of simulations is not large enough to offset

the number of Ss. Finally, using LDA-transformed Ss

avoids correlations among explanatory variables.

Tests on simulated data sets

Pseudo-observed data sets (pods) were simulated from a

set of known scenarios and prior distributions to com-

pare posterior probabilities obtained through the logistic

regression performed on both LDA-transformed and raw

Ss. The pods were defined to mimic the real microsatellite

data set of the ABC analysis 1 processed by Lombaert

et al. (2011) on the invasive coccinelid Harmonia axyridis.

The pods hence included 18 microsatellites genotyped in

five population samples (18–35 individuals per popula-

tion samples). This data set was produced to make infer-

ences about the origin of the invasive H. axyridis

population established in eastern North America in 1988

(ENA), considering altogether two populations from the

native range, two strains used for biocontrol release and

one (target) population from the introduction range

(ENA). In this analysis, Lombaert et al. (2011) defined ten

competing scenarios considering a native or biocontrol

population as a source for ENA or admixture between

them (see Lombaert et al. 2010, 2011 for details).

As in analysis 1 of Lombaert et al. (2011), genetic vari-

ation within and between populations was summarized

in the pods using a set of (raw) statistics traditionally

employed in ABC (Cornuet et al. 2008, 2010; Guillemaud

et al. 2010). For each population and each population

pair, we used the mean number of alleles per locus, the

mean expected heterozygosity and the mean allelic size

variance. The other statistics used were the mean ratio of

the number of alleles over the range of allele sizes, pair-

wise FST values, mean individual assignment likelihoods

of population i assigned to population j and the maxi-

mum likelihood estimate of admixture proportion. The

total number of Ss was 86.

We choose this particular scenarios-priors-Ss setting

because it had the potential to fairly illustrate our new

methodological developments based on LDA-trans-

formed Ss. This setting was characterized by relatively

high (mean) type I error rates (c. 0.40, owing to the large

prior parameter space used to generate pods, this space

included ‘areas’ for which the discrimination among

scenarios was difficult) and relatively small (mean) type

II error rates (c. 0.07). High type I error rates correspond

to situations where probability values of the target sce-

nario can be small to high depending on the parameter

values of the analysed pod, hence virtually including the

entire spectrum of probabilities between 0 and 1. This

allows a better (and fairer) comparison of results between

raw and LDA-transformed Ss (cf. it is difficult to compare

probability estimations when all values are between say

0.95 and 1.0). Moreover, this particular setting was cho-

sen because it corresponded to complex evolutionary

models and large data sets that nevertheless could be

analysed for a large number of pods using logistic regres-

sion on both LDA-transformed and raw Ss. More com-

plex data and scenario settings (with larger number of

scenarios and ⁄ or raw Ss) were computationally too

demanding to obtain probability estimations on a large

enough number of pods in a manageable time using logis-

tic regression on raw Ss (i.e. <15 min per pod on a single

standard biprocessor computer). The results presented
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here were, however, qualitatively similar to those

obtained considering various alternative settings (with

smaller or larger numbers of scenarios and ⁄ or raw Ss)

that we have also tested with our methodological innova-

tion (results not shown).

The ABC analyses of the pods were performed using

parameter values drawn from the prior distributions

described in Table S1 (Supporting information) and by sim-

ulating 106 data sets for each of the ten competing scenar-

ios. For each pod, we estimated the posterior probabilities of

the scenarios using a polychotomous logistic regression on

the 1% of simulated data sets closest to the observed data

set, considering either LDA-transformed or raw Ss.

We produced a first set of 500 pods under scenario 5

(the scenario selected after ABC treatment by Lombaert

et al. 2011), drawing parameters values into the distribu-

tions described in Table S1 (Supporting information).

This scenario 5 is presented graphically in Fig. S1 (Sup-

porting information); the nine other competing scenarios

correspond to alternative source(s) of the target-intro-

duced population (see Lombaert et al. 2011 for details).

For each pod, we used the logistic regression on either the

9 LDA-transformed or the 86 raw Ss to estimate the pos-

terior probability and 95% CI of scenario 5 relatively to

the set of ten compared scenarios. The number of itera-

tions of the Newton–Raphson algorithm used by the

logistic regression computations and the mean time of

each iteration were also recorded for each pod.

We then produced a second set of 1000 pods including

10 subsets of 100 pods simulated under each of the 10

compared scenarios, drawing parameter values from the

same distributions (Table S1, Supporting information).

Each pod’s subset was used to estimate type I and type II

errors on scenario choice using either the nine LDA-

transformed or the 86 raw Ss. Type I error of a given

scenario is the proportion of pods simulated from this

scenario for which this scenario does not have the highest

posterior probability. Type II error is the proportion of

pods for which the scenario with the highest posterior

probability is not the given true one.

Finally, we evaluated the impact of the dimensionality

of the simulated data set (i.e. the ‘curse of dimensionality’

mentioned in the Introduction section), using either the

nine LDA-transformed or the 86 raw Ss. For different

amounts of simulated data sets, we estimated the type I

and II error rates from 500 pods simulated under scenario

5 (type I error for scenario 5) and 500 pods simulated

under scenario 1 (type II error for scenario 5 which in this

case corresponds to the proportion of times that scenario

5 was selected when pods have been produced under sce-

nario 1). Scenario 1 was chosen to evaluate type II errors

because this scenario has shown the largest type II errors

in the above-mentioned analyses. To consider different

dimensionalities of simulated data sets, we decreased the

number of data sets simulated for each of the ten com-

pared scenarios from 106 to 104, keeping the proportions

of data sets closest to the observed data set selected for

the logistic regression at 1% of the total number of simu-

lated data sets.

All analyses were processed on a 2 CPU Intel Xeon

X5472 computer (Windows XP platform, 32 bits system,

4 Gb of RAM) using a modified version of the package

DIYABC V1. This modified version is available under

request from AE. LDA transformation of Ss before logis-

tic regression will be implemented in a new multiplat-

form version of DIYABC that will be freely available later

in 2012.

Tests on real data sets

We used the real microsatellite data sets of Lombaert

et al. (2011) to compare scenario choice and probability

estimation computing logistic regression on both LDA-

transformed and raw Ss. These data sets, which included

18 microsatellites genotyped on five to eight population

samples (18–42 individuals per population samples),

were used to make five consecutive ABC analyses about

the worldwide routes of invasion of the coccinelid H. axy-

ridis, considering altogether populations from the native

range, the introduction range and biocontrol release

actions, with potential admixture between them (see

Lombaert et al. 2010, 2011 for details).

We used prior distributions and Ss identical to those

described in the previous section (Tests on simulated

data sets; Table S1, Supporting information). Following

Lombaert et al. (2010, 2011), we performed five consecu-

tive ABC analyses of invasion scenarios involving succes-

sive H. axyridis outbreaks that were successively

recorded in the invaded range. As previously detailed,

analysis 1 dealt with the introduction pathway for the

first recorded outbreak in eastern North America in 1988,

defining 10 competing scenarios. Analysis 2 dealt with

the second outbreak recorded in western North America

in 1991, taking into account the scenario selected in anal-

ysis 1, hence defining 15 competing scenarios. The Euro-

pean and South American outbreaks in 2001 were

addressed in analyses 3 and 4, respectively (15 scenarios

for each outbreak), taking into account the scenario

selected in analysis 1 and 2. Finally, the African outbreak

in 2004 was considered in analysis 5 (28 scenarios), taking

into account the scenarios selected in analyses 1, 2, 3 and

4. The total number of raw Ss varied from 86 (analysis 1)

to 223 (analysis 5), whereas the total number of

LDA-transformed Ss varied from 9 (analysis 1) to 27

(analysis 5).

The ABC analyses were performed by simulating 106

microsatellite data sets for each competing scenario in

the first four analyses and 5 · 105 data sets per scenario
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in analysis 5 because of the high number of scenarios (28)

and raw summary statistics (223) which made a larger

analysis computationally too heavy, even when using

LDA-transformed Ss. For each of the five analyses, we

estimated the posterior probabilities of the competing

scenarios using a polychotomous logistic regression on

the 1% of simulated data sets closest to the observed data

set, considering either LDA-transformed or raw Ss. Com-

putation times were also recorded to illustrate the gain

obtained in computation speed when using LDA-trans-

formed Ss.

Finally, we evaluated the impact of the number of

simulated data sets recorded in the reference table for

analysis 1 on the estimation of the probability of scenario

5 using either LDA-transformed or raw Ss. To this aim,

we decreased the number of data sets simulated for each

of the ten compared scenarios from 106 to 104, keeping

the proportions of data sets closest to the observed data

set selected for the logistic regression at 1% of the total

number of simulated data sets.

All analyses were processed on a 2 CPU Intel Xeon

E5540 computer (Windows XP platform, 32 bits system,

4 Gb of RAM) using a modified version of the package

DIYABC V1 (available under request from AE).

Results

Tests on simulated data sets

Figure 1A illustrates the strong correlation between the

probability values of scenario 5 obtained from pods com-

puting logistic regression on LDA-transformed Ss and

raw Ss (Pearson’s correlation coefficient = 0.940). One

can see, however, a trend for a globally slightly lower sce-

nario probability with LDA-transformed Ss (see linear

regression equation in the legend of Fig. 1A). Figure 1B

shows that 95% CI are almost always smaller with LDA-

transformed Ss.

Figure 2 summarizes the type I and II error rates

obtained with LDA-transformed and raw Ss. We found

that these error rates substantially varied among scenar-

ios but were to a large extent similar for both methods for

a given scenario. P-values computed using Fisher’s exact

test were higher than 0.6 for all scenarios for mean type II

errors and were lower than 5% for a single scenario for

type I errors (P = 0.047 for scenario 7; P-value nonsignifi-

cant after applying the false discovery rate correction

method of Benjamini & Hochberg 1995).

The gain in computation time with LDA-transformed

Ss was high. First, the number of iterations needed to

reach convergence during the logistic regression analysis

was lower with LDA-transformed Ss (mean = 7.320,

SD = 1.420) than with raw Ss (mean = 9.190, SD = 2.250).

Second, the mean time of each such iteration was consid-

erably smaller with LDA-transformed Ss (mean = 7.034 s,

SD = 0.791) than with raw Ss (mean = 888.146 s, SD =

65.374). This translated into a computation speed

increase by a mean factor 128.128 (SD = 19.482) per itera-

tion and 163.601 (SD = 46.456) for a completed logistic

regression analysis. The computation time for the

LDA transformation of raw Ss before the regression was

negligible.
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Fig. 1 Probability estimations of scenario 5 computed using

linear discriminant analysis (LDA)-transformed or raw sum-

mary statistics for 500 pods simulated under scenario 5 (10 sce-

narios compared). (a) Pearson’s correlation coefficient between

probability estimations = 0.940 (95% CI = [0.928, 0.949]). Solid

line: y = x; dotted line: linear regression line y = 0.818436x +

0.004878. (b) 95% CIs (i.e. 2.5% and 97.5% quantiles) for each

probability values obtained from either LDA-transformed

summary statistics (black lines) or raw summary statistics (grey

lines).
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Results summarized in Table 1 indicate that we did

not face the curse of dimensionality problem (see defini-

tion in the Introduction section) at least in the present set-

ting. Even for a large number of Ss and a strongly

degraded number of simulated data sets including only

104 data sets per scenario (total of 105 data sets for the ten

compared scenarios in this case), the error rates did not

dramatically increase. The increase in type I and II error

rates with smaller data sets is (only) slightly faster for

raw Ss than for LDA-transformed Ss.

Tests on real data sets

As will be further illustrated later on real data sets, our

methodological innovation is particularly attractive when

practitioners have to deal with a large number of com-

plex scenarios involving a large number of Ss. Table 2

summarizes our results on scenario choice and probabil-

ity estimation computing logistic regression on both

LDA-transformed and raw Ss obtained on the real micro-

satellite data sets of Lombaert et al. (2011). For each of the

five consecutive analyses, the same scenario had the

highest probability and was hence selected using either

LDA-transformed or raw Ss. The probabilities of the most

likely scenarios were slightly smaller with LDA-trans-

formed Ss for analyses 1, 3 and 4, and slightly larger for

analysis 2. In contrast to computation based on LDA-

transformed Ss, analysis 5 could not be processed with

raw Ss owing to computer memory overflow. In all anal-

yses, the 95% CI of the most likely scenario never over-

lapped those of competing scenarios. As found with

simulated pods, 95% CI with LDA-transformed Ss were

smaller than those with raw Ss.

In agreement with pods analyses, the gain in computa-

tion time with LDA-transformed Ss was substantial. For

all analyses, both the number of iterations needed to reach

convergence during the logistic regression and the mean

computation time for each such iteration were smaller

with LDA-transformed Ss. This translated into a compu-

tation speed increase by a factor 72–101 per iteration and

93–159 for a completed logistic regression analysis.

Figure 3 indicates that analysis 1, processed either on

LDA-transformed or raw Ss, is rather robust to the poten-

tial difficulties associated with the curse of dimensional-

ity. Estimations of the probability of scenario 5 start to

fluctuate substantially and 95% CIs to increase consider-

ably for simulation efforts including <2 · 105 data sets

per scenarios. No obvious differences could be observed

between LDA-transformed and raw Ss.

Discussion

Model comparison is an active research field among the

widespread developments currently undergone in ABC

(e.g. Beaumont et al. 2009; Beaumont 2010; Bertorelle et al.

2010; Csilléry et al. 2010; Robert et al. 2011). Here, we

propose a methodological innovation to deal with the
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Fig. 2 Confidence in discriminating scenarios using linear dis-

criminant analysis-transformed or raw summary statistics.Note:

Type I error: exclude scenario x when it is actually scenario x.

Type II error: choose scenario x when it is not scenario x. Results

are based on 100 pods per scenario (total of 10 compared scenar-

ios). The compared scenarios correspond to variants of the sce-

nario 5, the latter being detailed in Fig. S1 (Supporting

information).

Table 1 Type I and II error rates estimated for different

numbers of simulated data sets

Number of simulated data sets for each

of the 10 compared scenarios

106 105 5 · 104 2 · 104 104

Type I error

LDA-transformed Ss 0.560 0.556 0.584 0.592 0.622

Raw Ss 0.450 0.492 0.530 0.536 0.624

Type II error

LDA-transformed Ss 0.056 0.056 0.052 0.062 0.080

Raw Ss 0.060 0.062 0.072 0.088 0.116

Type I error rates were estimated for scenario 5 from 500 pods.

Type II errors were estimated for scenario 5 when simulating 500

pods under scenario 1. The number of data sets simulated for

each of the 10 compared scenarios decreased from 106 to 104,

keeping the proportions of data sets closest to the observed data

set selected for the logistic regression at 1% of the total number

of simulated data sets.

LDA, linear discriminant analysis.
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discrimination among a large set of complex scenarios

through more efficient ABC probability computation

using a LDA on Ss before the logistic regression analysis.

Statistical methods to select appropriate Ss to optimize

model selection are still under development and dis-

cussed (see for instance Fearnhead & Prangle 2012 and

associated discussions). Our LDA-based transformation

of Ss represents a practical and straightforward way to

tackle this question.

We show, using both simulated and real data sets, that

posterior probabilities of scenarios computed from LDA-

transformed and raw Ss are strongly correlated. LDA-

transformed Ss tend, however, to provide slightly lower

probability values and hence to be somewhat conserva-

tive with respect to scenario discrimination. On the other

hand, model probabilities estimated from LDA-trans-

formed Ss are characterized by smaller 95% CI. The later

feature is expected to decrease the number of inconclu-

sive results if nonoverlapping of CI is taken as a criterion

to select a scenario. When scenario selection is made on

the basis of the highest probability, type I and II errors

were nevertheless similar for both methods. The lower

number of LDA variables used for the logistic regression

analysis (e.g. nine LDA-transformed Ss vs. 86 raw Ss in

the pods we analysed) is likely to explain, to a large

extent, both the smaller 95% CIs of probability estimates

and the smaller number of iterations needed to reach con-

vergence during the regression.

A major practical advantage of using LDA-trans-

formed Ss is that it substantially decreases the dimension

of explanatory variables making computation of scenario

probability (much) faster and sometimes simply feasible

when the available memory space is not large enough to

compute the matrix of second partial derivatives of the

likelihood (p1 of Supplementary material in Cornuet

et al. 2008), as in analysis 5 using the real data set of

Lombaert et al. (2011). This allows larger data scenarios

setting to be analysed. It is worth stressing, however, that

because LDA transformation only works with the num-

ber of Ss and not on the number of parameters of the

models, such transformation should not motivate ABC

practitioners to over-parameterize their models.

Faster probability computation increases the ability of

ABC practitioners to analyse large numbers of pods (for

instance, using the option ‘Evaluate confidence in sce-

nario choice’ in the package DIYABC). It hence makes it

easier to process a manageable empirical evaluation of

the power to discriminate among a given set of scenarios

by computing type I and II errors from sufficiently large

number of pods, especially for large sets of complex sce-

narios (see e.g. Robert et al. 2011 for theoretical argu-

ments in favour of such experimental explorations).

Several authors have suggested to use scenario probabilities

computed from pods to evaluate type I and II errors toT
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estimate the posterior probability of a model among a set

of k models given the observed posterior probability of a

real data set, P (Mk is the true model | observed esti-

mated posterior probability = x). Such computation can

then be used to adjust the posterior probabilities esti-

mated from the real data set, taking part of the errors

associated with ABC into account (see Fagundes et al.

2007).

Other potential advantages of LDA transformation of

raw Ss include reducing the difficulties associated with

the curse of dimensionality and avoiding correlation

among explanatory variables (i.e. multi-colinearity) dur-

ing the regression step. At least theoretically, the dimen-

sionality issue might be offset by increasing the number

of simulations, but the amount of time then needed for

concrete implementation might be unreasonable. It is

worth stressing, however, that the actual impact of such

potential issues remains difficult to assess in a generic

manner as it probably differs depending on the analysed

observed data set, as well as on the Ss and ⁄ or scenario

settings. Table 1 and Fig. 3 both indicate a good robust-

ness to the numbers of simulated data sets, as a substan-

tial effect could be observed only for particularly low

(and in practice rarely used) number of simulated data

sets. Analyses carried on pods suggest a slightly better

robustness when using LDA-transformed rather than

raw Ss, at least when using type I and II error rates as cri-

terion (cf. the slightly smaller increase in errors with

smaller data sets for LDA-transformed than raw Ss). It is

difficult to know, however, to which extent this result

reflects the lower number of LDA variables used for the

regression and ⁄ or the fact that a substantial number of

raw Ss are nonindependent variables.

We believe that our LDA-based methodological inno-

vation will usefully enlarge the tool box available to biol-

ogists to make ABC inferences on more complex and

hence more realistic demographic processes that have

acted on natural populations.
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Csilléry K, Blum M, Gaggiotti O, François O (2010) Approximate Bayesian

Computation (ABC) in practice. Trends in Ecology and Evolution, 25,

410–418.

Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using

genetic data: why, how and so what? Molecular Ecology, 19, 4113–4130.

Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet J-M (2004) Genetic

analysis of complex demographic scenarios: spatially expanding popu-

lations of the cane toad, Bufo marinus. Evolution, 58, 2021–2036.

Excoffier L, Heckel G (2006) Computer programs for population genetics

data analysis: a survival guide. Nature Review Genetics, 7, 745–758.

Fagundes NJR, Ray N, Beaumont M et al. (2007) Statistical evaluation of

alternative models of human evolution. Proceedings of the National Acad-

emy of Sciences of the United States of America, 104, 17614–17619.

Fearnhead P, Prangle D (2012) Constructing summary statistics for

approximate Bayesian computation: semi-automatic approximate

Bayesian computation. Journal of the Royal Statistical Society. Series B

(Methodological), 74, 1–28.

Fisher RA (1936) The use of multiple measurements in taxonomic prob-

lems. Annals of Eugenics, 7, 179–188.

Guillemaud T, Beaumont M, Ciosi M, Cornuet J-M, Estoup A (2010) Infer-

ring introduction routes of invasive species using approximate Bayes-

ian computation on microsatellite data. Heredity, 104, 88–99.

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learn-

ing Data Mining, Inference, and Prediction, Second Edition Springer Ser-

ies in Statistics. Springer-Verlag, New York.
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